A Critical Evaluation of The Difference Between Organic and Inorganic Compounds

Jay Chandra^{1*}

¹Raigarh College of Pharmacy, Chhattisgarh, India

*Corresponding Author E-mail: jaychandrarcp@gmail.com

Abstract:

In the Science and Technology considered inorganic and organic elements in chemistry that affirm the existence and the concept of this study. Organic and Inorganic compounds explained are created and separated in the plan that is proposed appropriate grade. Including human and animal organisms, they mostly create organic and inorganic substances. The organic compounds are made with specific protein chains, lipid structure, carbohydrates and hormones. On other hands, the inorganic compounds are creating specific molecules, such as water and essential minerals. Normally, organic compounds are textures that involve covalent carbon bonds, hydrogen bonds, and oxygen and nitrogen bonds. Carbon atoms are mainly stranded on a particular structure, which creates various diversity of organic element. Everything on Earth is explained as a breathing creature that depends on organic materials. Again, with inorganic compounds are made two or more molecules than

Keywords: Alkanes, Alkenes, Alkyl, Alkynes, Allotropes, Amorphous, Covalent Bonds, Metals, Metal Hydrides And Metal Sulphides.

1. INTRODUCTION\

An organic elements is described more compounds which elements consists carbon and hydrogen bonds, and deal with specific scientific structure. The carbon and hydrogen bond is called hydrocarbon bonds that a derivative is called organic chemistry [1]. In general the organic elements are consists of mention the structure. In laboratory, 90% of compounds are known and mostly made of mainly three elements structure bases- hydrogen bond carbon and oxygen bonds.

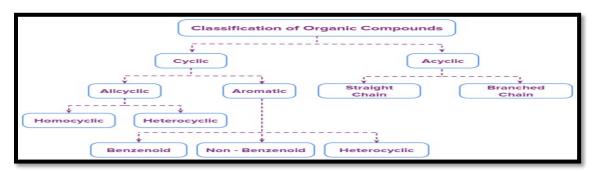


Figure 1: Structure of Organic and Inorganic Compound

Drug Discovery and Molecular Docking (DDMD)

ISSN: 3107-6688 | Vol. 01 Issue 02, May-Aug., 2025 | pp. 09-15

Another, remaining elements are called halogen which placed in 18 group number as a noble gas. The organic group properties are determined operating elements or called functional groups. An organic compound explained hydrocarbon compounds and inorganic compound explained non carbon compounds [2]. In general, difference between organic and inorganic compounds is inorganic elements' output is natural process while organic compound is related with all the living things.

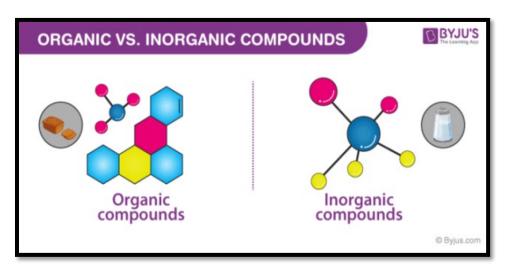
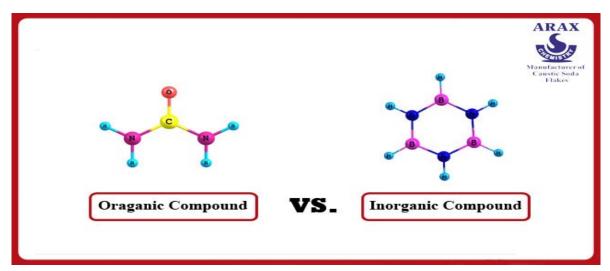


Figure 2: Differentiation of Organic and Inorganic Molecules

Inorganic compounds are in natural or man-made creation in laboratory, whereas organic compounds are output from the action of animals. Transition metal is present on inorganic compounds that have various categories ^[3]. The results of covalent bonds are provided a specific name due to provide both electrons elements which are finally distributed in the bond. As an example, coordination element is [Co (NH₃)₆] Cl₃, that consists of Co (NH₃)₆³⁺ ion, here, cobalt ion structure is (Co³⁺) with 6 ammonia compounds (NH₃) added and act as a legends.

II. OBJECTIVES

- To consists of hydrogen molecules, carbon molecules and other molecules
- To make a volatile and non volatile in nature base structure
- To explain the complexity of organic and inorganic compound
- To create the structure base on solid, liquid and gas
- To collect directly and indirectly from plants and extract from minerals
- To explain the derivatives of organic and inorganic compound


Drug Discovery and Molecular Docking (DDMD)

ISSN: 3107-6688 | Vol. 01 Issue 02, May-Aug., 2025 | pp. 09-15

III. METHODOLOGY

In modern chemistry, identified the organic and inorganic compounds that clearly explained organic compounds are elements that consist of carbon molecules. In the inorganic compounds consist of mainly carbon contained [4]. The organic elements are made with proper protein chains, lipids, carbohydrates, bonds and hormones. Again, the inorganic elements are made of proper molecules, like water and essential minerals. Usually, organic elements are made with carbon bonds, hydrogen, and oxygen bonds and nitrogen bonds. Carbon molecules are constructed on a specific fundamental structure that creates various types of organic elements.

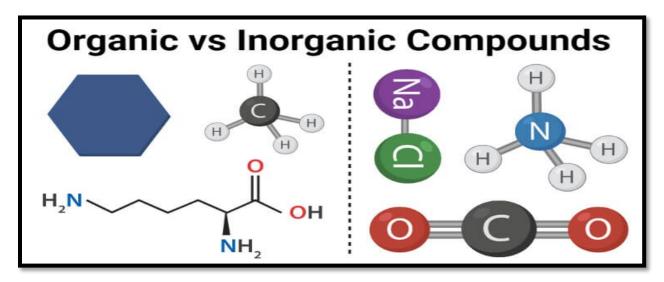
The scientist JonsBerzelious discovered the theory of vitalize which is explained the first particular to use the word of organic chemistry ^[5]. The study of organic compounds is derived from the source of biology, which proposed a main role. In 19th century, the scientist and biologist are observed a wide range of chemical properties. These researchers are prominent analytical differences enrolled between elements that originate from all the living beings.

Figure 3: Structure of Compounds

The scientist Friedrich Wohler damaged this theory after several years and proposed the best method ^[6]. In the organic chemistry firstly mentioned biochemistry with including molecules. Mainly, organic compounds structure is based on carbon components and some bonds are present in this compound. Carbon elements with non biological derivatives are related to the structure of organic chemistry. Carbon atoms are combined together with the bond of hydrogen atoms and create hydrocarbon bonds ^[7]The output of covalent bonds is creating a proper scientific name and making a basic structure due to electrons elements. The elements afford both the provided bonds, such as coordination bond present mentioned example [Co (NH₃)₆] Cl₃.

Drug Discovery and Molecular Docking (DDMD)

IV. COMPOSITION OF THE ORGANIC COMPOUND


Alkanes are the main component of any organic compound, and other two components are alkenes and alkynes. In general the organic elements are the alkanes that have only single stranded bonds between the carbon bonds. In organic compound the carbon bond is called hydrocarbons, which alkenes have minimum one bond is present in carbon-carbon chain[8]. This output from fundamental organisms activities and create a new organic product. Mainly, the DNA has present in single stranded DNA format, in this structure present table sugar, that scientific name is sucrose (C₁₁H₂₂O₁₁), methane (CH₄) and ethanol formula is (C₂H₆O) and benzene group. In ancient process, the Asia and Europe lead top improves of the main branch of science.

Compound	Impact
Alkanes	Liquid based
Carbon	One stranded
Metals	Create volatility

Table 1: Composition of the Organic Compound

V. ORGANIC COMPOUND'S STRUCTURE IS BASED ON VOLATILE AND NON-VOLATILE IN NATURE

The volatile organic compounds (VOC) are enlisted in organic elements that have a moisture pressure at normal room temperature. High condensation pressure related with reduce boiling point that is related to the number, this trait is called volatility. VOC is liable for the smell of perfume as pollutants[9]. VOCs operate an essential role in connect between the plants and animals and harmful to human health. VOC is mainly used in pharmacy and the main goals of controls the pharmaceutical business and laboratory.

Figure 4: Compounds Structure

Drug Discovery and Molecular Docking (DDMD)

ISSN: 3107-6688 | Vol. 01 Issue 02, May-Aug., 2025 | pp. 09-15

Anorganic compound can create a scientific name; this scientific name is called IUPAC. The full form of IUPAC is International Union of Pure and Applied Chemistry.

VI. THE ORGANIC AND INORGANIC COMPOUND CREATES THE STRUCTURE BASE ON SOLID, LIQUID AND GAS

The compounds consists carbon compound that mainly based on solid, liquid and gas. Various theories are provided on the organic compounds which are related to the fundamentals, models and the basic structure of Lewis model [10]. In inorganic chemistry the inorganic compound focused absence of carbon molecules. The inorganic compounds are explained the absence of carbon and hydrogen bonds. As examples, inorganic compounds are mentioned salts, chemicals and metals. The elements are called halogen which situated in group 18 as a noble gas. The organic group components are mentionedoperating elements and called functional groups. The organic compound determined hydrocarbon compounds or inorganic compound explained non carbon bonds [11]. Normally, the difference between organic and inorganic compounds are inorganic elements' outlay is natural procedure whereas theorganic compound is related with all the living things.

VII. TYPES OF ORGANIC COMPOUNDS AND INORGANIC COMPOUNDS AND FORMATION

The elements of molecules various elements output in the arrangement of compounds and based on the specific structure. The basic structure consists between the molecules of elements that are classified into four most essential categories. Such as covalent bonds, Ionic compounds, metallic compounds and coordinate covalent bonds [12]. Inorganic compounds have covalent bonds, compounds, molecules and various types of elements that provided electrons to stable. In the ionic compounds, molecules and various elements are identical with every molecule. The metallic components are classified the identical metallic elements with strengthen metallic elements. In coordinate covalent elements have basic structural compositions that held covalent bonds [13]. The structure of urea was consisted for the transformation in the organic chemistry. In 1845, Kolbe proposed the presentation of acetic acid in laboratory whereas Hennel worked the process of ethyl alcohol.

Drug Discovery and Molecular Docking (DDMD)

ISSN: 3107-6688 | Vol. 01 Issue 02, May-Aug., 2025 | pp. 09-15

The fundamental structure made between the molecules that are defined four most essential bond categories. Like as covalent bonds, Ionic compounds, metallic compounds and coordinate covalent bonds. In organic elements have covalent bonds, molecules and various types of compoundswhich are provided electrons due to stable the compound formation. The ionic compounds have particular structureand specific name some elements are more identical with the structure but specific IUPAC name [14]. Firstly, the organic elements' structure is based on carbon bondsthat are present in these elements. Carbon moleculeshave non biological identities which are related to the fundamental structure of organic chemistry. The elements get both the distributed bonds, like as coordination bond that represent mentioned this fundamental structure of the example [Co (NH₃)₆] Cl₃. The fundamental structure of mineral carbonate (-CO₃) and bicarbonate structure is formed (-HCO₃).

VIII. PROBLEM STAMENS

The research study of organic and inorganic elements mentioned with basic structure, figure, and chemical reactions of all the compounds ^[15]. In general, chemistry and organic chemistry can be made current elements that proposed a basic design that have essential properties. Here, inorganic and organic compounds are basic difference is natural and chemical resources.

IX. CONCLUSION

Carbon atoms are combined together with the bond of hydrogen molecules and made the bond with hydrocarbon compounds. In chemistry the covalent bonds is derived a specific scientific name and create a basic structure due to electrons molecules. The compounds are directly and indirectly extracted from plants and minerals. The derivatives of organic and inorganic compound are special IUPAC name with strategic structure. The organic compounds are primarily explained biochemistry with enlisted molecules.

REFERENCES

- 1. Alabsi, S.S., Ahmed, A.Y., Dennis, J.O., Khir, M.M. and Algamili, A.S., 2020. A review of carbon nanotubes field effect-based biosensors. *IEEE Access*, 8, pp.69509-69521.
- 2. Azzouz, A., Vikrant, K., Kim, K.H., Ballesteros, E., Rhadfi, T. and Malik, A.K., 2019. Advances in colorimetric and optical sensing for gaseous volatile organic compounds. *TrAC Trends in Analytical Chemistry*, 118, pp.502-516.
- 3. Basyoni, M.S.S., Salah, M.M., Mousa, M., Shaker, A., Zekry, A., Abouelatta, M., Alshammari, M.T., Al-Dhlan, K.A. and Gontrand, C., 2021. On the investigation of interface defects of solar cells: lead-based vs lead-free perovskite. *IEEE Access*, 9, pp.130221-130232.
- 4. Coatsworth, P., Gonzalez-Macia, L., Collins, A.S.P., Bozkurt, T. and Güder, F., 2023. Continuous monitoring of chemical signals in plants under stress. *Nature Reviews Chemistry*, 7(1), pp.7-25.

Drug Discovery and Molecular Docking (DDMD)

ISSN: 3107-6688 | Vol. 01 Issue 02, May-Aug., 2025 | pp. 09-15

- 5. Hemmati, R., Wu, F. and El-Refaie, A., 2019, May. Survey of insulation systems in electrical machines. In 2019 IEEE International Electric Machines & Drives Conference (IEMDC) (pp. 2069-2076). IEEE.
- 6. Jia, Z., Patra, A., Kutty, V.K. and Venkatesan, T., 2019. Critical review of volatile organic compound analysis in breath and in vitro cell culture for detection of lung cancer. *Metabolites*, 9(3), p.52.
- 7. Krishnamurthy, A., Adebayo, B., Gelles, T., Rownaghi, A. and Rezaei, F., 2020. Abatement of gaseous volatile organic compounds: A process perspective. *Catalysis Today*, *350*, pp.100-119.
- 8. Qazi, S., Khawaja, B.A. and Farooq, Q.U., 2022. IoT-equipped and AI-enabled next generation smart agriculture: a critical review, current challenges and future trends. *IEEE Access*, *10*, pp.21219-21235.
- 9. Soni, M., Bhattacharjee, M., Ntagios, M. and Dahiya, R., 2020. Printed temperature sensor based on PEDOT: PSS-graphene oxide composite. *IEEE Sensors Journal*, 20(14), pp.7525-7531.
- 10. Szymanski, N.J., Zeng, Y., Huo, H., Bartel, C.J., Kim, H. and Ceder, G., 2021. Toward autonomous design and synthesis of novel inorganic materials. *Materials horizons*, 8(8), pp.2169-2198.
- 11. Takei, K., Gao, W., Wang, C. and Javey, A., 2019. Physical and chemical sensing with electronic skin. *Proceedings of the IEEE*, 107(10), pp.2155-2167.
- 12. Tang, B., Lu, Y., Zhou, J., Chouhan, T., Wang, H., Golani, P., Xu, M., Xu, Q., Guan, C. and Liu, Z., 2020. Machine learning-guided synthesis of advanced inorganic materials. *Materials Today*, 41, pp.72-80.
- 13. Vassetti, D., Pagliai, M. and Procacci, P., 2019. Assessment of GAFF2 and OPLS-AA general force fields in combination with the water models TIP3P, SPCE, and OPC3 for the solvation free energy of druglike organic molecules. *Journal of chemical theory and computation*, 15(3), pp.1983-1995.
- 14. Wang, M., Mei, Y., Li, X., Burgos, R., Boroyevich, D. and Lu, G.Q., 2019. Pressureless silver sintering on nickel for power module packaging. *IEEE Transactions on Power Electronics*, 34(8), pp.7121-7125.
- 15. Watanabe, A.O., Ali, M., Sayeed, S.Y.B., Tummala, R.R. and Pulugurtha, M.R., 2020. A review of 5G front-end systems package integration. *IEEE Transactions on Components, Packaging and Manufacturing Technology*, 11(1), pp.118-133.